This article was downloaded by: [University of California, San Diego]

On: 15 August 2012, At: 23:22 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl19

Photopolymerization of Fullerene C₆₀ in Langmuir Films at the Air/Phenol Aqueous Interface

Qiang Xia ^a , Zuhong Lu ^a & Kongzhang Yang ^b

^a National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing, 210096

^b Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, Shandong University,

Version of record first published: 24 Sep 2006

To cite this article: Qiang Xia, Zuhong Lu & Kongzhang Yang (2001): Photopolymerization of Fullerene C₆₀ in Langmuir Films at the Air/Phenol Aqueous Interface, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 371:1, 9-12

Jinan, 250100, China

To link to this article: http://dx.doi.org/10.1080/10587250108024675

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Photopolymerization of Fullerene C_{60} in Langmuir Films at the Air/Phenol Aqueous Interface

QIANG XIA, ZUHONG LU and KONGZHANG YANG*

National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096 *Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, Shandong University, Jinan 250100, China

The photopolymerization of C_{60} in Langmuir film at the air/phenol aqueous interface was studied by π -A isotherms and UV spectra. With the elongation of irradiation time at 254 nm UV-light, π -A isotherms of C_{60} monolayer became more expanded and the specific absorption peak of C_{60} LB monolayer at 342, 266, 218nm in UV spectra lowered gradually and no peaks were found in UV spectra finally.

Keyword C₆₀, photopolymerization, Langmuir film

INTRODUCTION

Photoreaction of film-forming molecules in LB films has attracted much interest due to its application both to stabilize the LB films and to mimetic some photochemical reactions occurred in the biological systems using LB films as model systems.

Fullerene C_{60} could polymerize under UV-light irradiation to form polymeric $C_{60}^{[1]}$. The photoreactivity of C_{60} made it possible to be used as the negative photoresist in the fabrication of high-resolution patterns

in microelectronic industry due to the fact that the dissolution of C₆₀ molecules in organic solvents changed greatly after UV-light irradiation^[2]. Further studies focusing on the electron beam (EB)-induced polymerization of C₆₀ implied the same possibility of C₆₀ as EB resist^[3].

In this paper, we have studied the photopolymerization of C_{60} at the air/phenol aqueous interface by using π -A isotherms and UV spectra.

EXPERIMENTAL SECTION

C₆₀(>99%) was purchased from Fullerene Institute of Wuhan University. π-A isotherms were obtained on a NIMA 2000 LB system (Nima technology, Great Britain) at 25±1°C. Monolayers of C₆₀ were obtained by spreading a benzene solution(1.0×10⁻⁵ mol·dm⁻³) onto the surface of the phenol subphase. C₆₀ monolayers were irradiated by 254 nm UV-light of a low-pressure mercury lamp (approximate power density 0.40 mW-cm⁻²) at various times. The distance between the irradiation source and the surface of subphase was kept at 10 cm. Absorbance changes accompanying photopolymerization of C₆₀ were followed with Shimadzu UV-240 spectrophotometer.

RESULTS AND DISCUSSION

As shown in Figure 1, with the elongation of the irradiation time, it is obvious that the photoreaction of C_{60} induced by the irradiation made the π -A isotherms of C_{60} Langmuir films change in a regular way. The

isotherms moved along the direction of increasing molecular area and the films became more expanded. The molecular area enlarged with the increase of the irradiation time, until to 1.14 nm²/molecule at 16 hours. surpassing the cross section area of C₆₀ molecule of 0.98 nm². The average occupying area of C₆₀ molecules was larger than its section area meant that the monolayer was more like a real monomolecular film than unirradiated film from the point view of statistical thermodynamics.

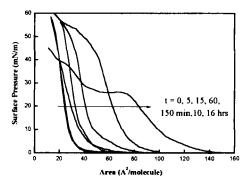


FIGURE 1 π -A isotherms of C₆₀ Langmuir films irradiated by 254 nm UV-light irradiation at various times

UV spectra at various irradiation times of C_{60} LB monolayers prepared by using the horizontal lowering method at 10 mN/m also confirmed the occurrence of the photopolymerization of C_{60} at the air/aqueous interface(Figure 2). The three specific peaks of C_{60} at 218, 266 and 342 nm became weaker and weaker with the elongation of irradiation time. There were no absorption peaks in the UV spectra of C_{60} films after being irradiated 16 hours. This is due to the change of electronic energy level of C₆₀ molecules(in fact, C₆₀ portion in C₆₀ polymer or oligomer) induced by the polymerization of adjacent C₆₀ molecules under UV light irradiation.

FIGURE 2 UV spectra of C_{60} LB monolayers with various irradiation times at the air/aqueous interface

Acknowledgement

Support of this work by a grant from the Natural Science Foundation (No 29874008,69890220) is gratefully acknowledged.

References

- [1] Rao A M, Zhou P, Wang K A, Hager G T, Holden J M, Wang Y, Lee W T, Bi X X, Eklund P C, Cornett D S, Duncan M A, Amster I J. Science, 259, 955(1993)
- [2] Tajima Y, Ishii T, Takeuchi K. Riken Rev. 15, 85(1997)
- [3] Gordeev Y S, Mikoushkin V M, Shnitov V V. Molecular Materials, 11(1-2), 81(1998)